Blur invariant pattern recognition and registration in the Fourier domain
نویسنده
چکیده
Pattern recognition and registration are integral elements of computer vision, which considers image patterns. This thesis presents novel blur, and combined blur and geometric invariant features for pattern recognition and registration related to images. These global or local features are based on the Fourier transform phase, and are invariant or insensitive to image blurring with a centrally symmetric point spread function which can result, for example, from linear motion or out of focus. The global features are based on the even powers of the phase-only discrete Fourier spectrum or bispectrum of an image and are invariant to centrally symmetric blur. These global features are used for object recognition and image registration. The features are extended for geometrical invariances up to similarity transformation: shift invariance is obtained using bispectrum, and rotation-scale invariance using log-polar mapping of bispectrum slices. Affine invariance can be achieved as well using rotated sets of the log-log mapped bispectrum slices. The novel invariants are shown to be more robust to additive noise than the earlier blur, and combined blur and geometric invariants based on image moments. The local features are computed using the short term Fourier transform in local windows around the points of interest. Only the lowest horizontal, vertical, and diagonal frequency coefficients are used, the phase of which is insensitive to centrally symmetric blur. The phases of these four frequency coefficients are quantized and used to form a descriptor code for the local region. When these local descriptors are used for texture classification, they are computed for every pixel, and added up to a histogram which describes the local pattern. There are no earlier textures features which have been claimed to be invariant to blur. The proposed descriptors were superior in the classification of blurred textures compared to a few non-blur invariant state of the art texture classification methods.
منابع مشابه
Object Recognition Using Frequency Domain Blur Invariant Features
In this paper, we propose novel blur invariant features for the recognition of objects in images. The features are computed either using the phase-only spectrum or bispectrum of the images and are invariant to centrally symmetric blur, such as linear motion or defocus blur as well as linear illumination changes. The features based on the bispectrum are also invariant to translation, and accordi...
متن کاملPrediction of dispersed mineralization zone in depth using frequency domain of surface geochemical data
Discrimination of the blind and dispersed mineralization deposits is a challenging problem in geochemical exploration. The frequency domain (FD) of the surface geochemical data can solve this important issue. This new exploratory information can be achieved using the interpretation of FD of geochemical data, which is impossible in spatial domain. In this research work, FD of the surface geochem...
متن کاملDPML-Risk: An Efficient Algorithm for Image Registration
Targets and objects registration and tracking in a sequence of images play an important role in various areas. One of the methods in image registration is feature-based algorithm which is accomplished in two steps. The first step includes finding features of sensed and reference images. In this step, a scale space is used to reduce the sensitivity of detected features to the scale changes. Afterw...
متن کاملMulti-frame Super Resolution for Improving Vehicle Licence Plate Recognition
License plate recognition (LPR) by digital image processing, which is widely used in traffic monitor and control, is one of the most important goals in Intelligent Transportation System (ITS). In real ITS, the resolution of input images are not very high since technology challenges and cost of high resolution cameras. However, when the license plate image is taken at low resolution, the license...
متن کاملPrediction of mineral deposit model and identification of mineralization trend in depth using frequency domain of surface geochemical data in Dalli Cu-Au porphyry deposit
In this research work, the frequency domain (FD) of surface geochemical data was analyzed to decompose the complex geochemical patterns related to different depths of the mineral deposit. In order to predict the variation in mineralization in the depth and identify the deep geochemical anomalies and blind mineralization using the surface geochemical data for the Dalli Cu-Au porphyry deposit, a ...
متن کامل